Introduction to Stratospheric Dynamics

1D, 2D, Zonal mean 3D

Thermal structure of the atmosphere:

- Troposphere:
 - (They can answer this one!)

- Stratosphere:
 - Absorption of solar UV by O3
 - Emission of IR by CO2

1D/First order guess?

Radiative equilibrium
Thermal wind.

Consider a zonally symmetric atmosphere, statistical equilibrium.

Heat budget:
\[\nu \frac{\partial T}{\partial y} + w \left(\frac{\partial T}{\partial z} + \frac{g}{c_p} \right) = Q \]

Poles, Equator \(\frac{\partial T}{\partial y} = 0 \), so \(w \left(\frac{\partial T}{\partial z} + \frac{g}{c_p} \right) = Q \)

'(Draw in vertical arrows now)

When \(Q < 0 \), the atmosphere is warmer than \(T_e \)

Continuity:
\[\frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial (\rho w)}{\partial z} \Rightarrow \frac{[V]}{L} = \frac{[w]}{H} \]

(Draw in horizontal arrows)

Magnitude of Newtonian cooling \(Q = -\alpha (T - T_e) \), \(\alpha \sim 30 \text{ days}^{-1} \)
Angular momentum considerations – cannot just flow across contours of angular momentum. Need easterly angular momentum in winter stratosphere and mesosphere, westerly in summer.

What can deposit such momentum where needed?

Eddies.

Conventional mean framework

Zonal mean momentum equation, zonal, log \(p \)

\[
\frac{\partial u}{\partial t} + \nabla \frac{\partial}{\partial y} \bar{u} + \bar{w} \frac{\partial}{\partial z} u - \frac{f}{\rho} \nabla \cdot (\rho \bar{u} \bar{u}')
\]

Advection by eddy component of meridional velocity of the eddy component of zonal momentum

\(\rho \bar{u} \bar{u}' \) "eddy" flux of momentum

Zonal mean in log \(p \) and deviations from this zonal mean. "Eddy" is relative.

Isentropic mean framework

What I advocate for, but not commonly used

- models output on pressure levels
- not traditionally used, so people have trouble interpreting.
Transformed Eulerian Mean Framework

A compromise — pressure coordinates, eddy component in \(\theta \) isolated.

QG, \(\beta \) plane, isentropic slopes are small, such that vertical motion is small

\(\Theta_z \) is to leading order only a function of \(z \). (Static stability)

Leading order, geostrophy

\(u = -\Psi_y \); \(v = \Psi_x \); \(w = 0 \)

\(\Psi \) is the geostrophic streamfunction.

QG

1. \((\partial_t + u \partial_x + v \partial_y) u - \beta v v - f_0 v u = G(x) \)
2. \((\partial_t + u \partial_x + v \partial_y) v + \beta y u + f_0 v u = G(y) \)

Thermodynamic equation

3. \((\partial_t + u \partial_x + v \partial_y) \theta + w_\alpha \theta_0 z = \alpha_\theta \frac{J}{\rho} \left(\frac{\theta}{\hbar (\gamma T + g z)} \right)^{-1} \)

Combine to get approx eq:

\[
(\partial_t + u \partial_x + v \partial_y) q = X,
\]

\(q = f_0 + \beta y + \Delta^2 \Psi; \quad \Delta^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{1}{\rho_0} \frac{\partial^2}{\partial z^2} \left(\frac{\rho v^2}{N^2} \right) \)

\[
X = G(x) - G(u) + \frac{f_0}{\rho} \left[\frac{\partial}{\partial \gamma} (\gamma T + g z) \right] \frac{J}{\alpha_\theta \hbar (\gamma T + g z)^{-1}}
\]
Zonal mean of (1)

\[\overline{U_t} - f_0 \overline{V_a} = \frac{G\theta}{\nu} - (\overline{U'V'})_y \]

\[\overline{V} = \overline{V_x} = 0 \]

Zonal mean of (3)

\[\frac{\partial \overline{\theta}}{\partial t} + \overline{u_a} \theta_z = \frac{1}{\rho} \left[\frac{2}{\partial (\rho_T + \rho \theta)} \right]^{\perp} - \nabla^T \theta_y \]

continuity \(\overline{v_a} \theta_y + \frac{1}{\rho} (\rho \overline{u_a})_z = 0 \)

\(f_0 \overline{u}_z = - \frac{K}{H} \pi \overline{\theta}_y \)

or just

\[f_0 \overline{u}_z \approx - \overline{\theta}_y \]

Continuity lets us define

\[(\overline{v_a}, \overline{w_a}) = \left[\frac{1}{\rho} \frac{\partial (\rho X_a)}{\partial z}, - \frac{\partial X_a}{\partial y} \right] \] an ageostrophic streamfunction.

New streamfunction also nondivergent

\[(\overline{\nu_*}, \overline{w_*}) = \left[\frac{1}{\rho} \frac{\partial (\rho X_*)}{\partial z}, - \frac{\partial X_*}{\partial y} \right] \]

\[X_* = X_a + X_c \]
Sub \(\chi_k \) into (4)

\[
\frac{\partial \overline{\Theta}}{\partial t} + \overline{w} \cdot \overline{\Theta}_0 z = \overline{\mathcal{J}} - \frac{2}{\rho} \frac{\partial}{\partial y} \left(\overline{v' \Theta'} \right) - \overline{\Theta}_0 z \frac{\partial \chi_c}{\partial y}
\]

Choose \(\chi_c = -\frac{\overline{v' \Theta'}}{\overline{\Theta}_0 z} \),

\(\chi_k = \chi_a - \frac{\overline{v' \Theta'}}{\overline{\Theta}_0 z} \) residual streamfunction.

\[
\frac{\partial \overline{\Theta}}{\partial t} + \overline{w} \cdot \overline{\Theta}_0 z = \frac{\overline{\mathcal{J}}}{\rho \Pi}, \text{ and if we make the same substitution into momentum equation,}
\]

\[
\frac{\partial \overline{u}}{\partial t} - f_0 \overline{\chi}_k = \overline{G}_x + \frac{1}{\rho} \nabla \cdot F
\]

\[
F = \begin{pmatrix} \overline{F}(y) \\ \overline{F}(z) \end{pmatrix} = \begin{pmatrix} -\rho \overline{u v'} \\ \rho f_0 \overline{v' \Theta'}/\overline{\Theta}_0 z \end{pmatrix} \text{ is the Eliassen-Palm flux}
\]

【thermals wind is the same, continuity the usual, by our \(\chi_k \) definition】

\(\frac{1}{\rho} \nabla \cdot F \) entirely summarizes the eddy forcing on the mean state.

residual circulation corresponds to density-weighted mean circulation in isentropic coordinates.
Upward propagating waves, planetary scale wave numbers 1, 2, 3 reach a point where they cannot continue to propagate and break. (Depends on characteristics of mean flow)

\[\tilde{\omega}^* \text{ from continuity} \]
\[\frac{\partial}{\partial z} (\rho \tilde{\omega}^*) = \frac{1}{f_0} \frac{\partial}{\partial y} (\nabla \cdot F) \]

\[\rho \tilde{\omega}^* \rightarrow 0 \text{ as } z \rightarrow \infty \]

So if upward propagating wave, \(F_y = 0 \),
\[\nabla \cdot F = \frac{\partial F_z}{\partial z} \]

\(F_z \) must vanish at large \(z \).

Integrate down from \(z \rightarrow \infty \)
\[\rho \tilde{\omega}^* = \frac{1}{f_0} \frac{\partial F_z}{\partial y} \]

\(\tilde{\omega}^* \) only cares about what happens above.